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A~traet--Gravity-driven two-layer flow down a slightly wavy periodic incline at low Reynolds numbers 
is studied by a perturbation approach. Amplitude ratios and phase shifts of the fluid-fluid interface and 
the fluid-air free surface relative to the wavy wall are obtained as functions of the incline angle, wavelength 
of the roughness, and the ratios of film mean thickness, density and viscosity. Effects of surface tension 
and interface are included, and wall-shear-stress distributions are also discussed. 
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1. I N T R O D U C T I O N  

Multilayer flows of  immiscible viscous fluids are frequently encountered in many industrial 
processes. Examples of  these processes include multiple layer coating and coextrusion of  polymeric 
materials. To ensure the quality of  the products manufactured by these processes, it is very often 
desirable to maintain the thickness of  each layer uniform during the process. Thus the stability of  
the uniformly layered flow is essential for the success of  these operations. The stabilities of  
uniformly layered flows in different simple geometries have been extensively studied in the past 
decade, and the recent monograph of Joseph & Renardy (1993) gives a comprehensive summary 
of  these studies. 

Gravity-driven flow of liquid films down an inclined plane has been used as a prototype problem 
for the study of  coating flows. Stability for a single Newtonian layer has been investigated by Yih 
(1954, 1963), Benjamin (1957) and many  others (see Lin & Wang 1985 for a review for the literature 
prior to 1985, and Joo & Davis 1992, for the most recent developments). Stability of  multiple layer 
flows has also been considered by many people (Kao 1965a, b, 1968; Wang et  aL 1978; Lin 1983; 
Loewenherz & Lawrence 1989; Weinstein 1990; Weinstein & Kurz 1992; Chen 1993). All of  these 
studies are restricted to the situation in which the inclined plane is perfectly smooth. In coating 
operations, the substrate can be inclined to the horizontal after the fluid layers are coated on the 
substrate. It is of  interest to study the effect the roughness of  the substrate may have on the film 
uniformness. In the case of  small roughness; one may approximate the incline as a periodic 
sinusoidal surface with a small amplitude. Multiple film over a wavy surface may also be of  interest 
to other applications, such as flow through trickle-bed reactor and porous media (Dassori et  aL 

1984; Santos et  al. 1991). 
Steady low Reynolds number flow of  a Newtonian liquid layer down a slightly wavy surface has 

been considered by Wang (1981) by means of  a perturbation analysis. Pozrikidis (1988) extended 
Wang's  study to the case of  large waviness using a boundary integral method. Tougou (1978) has 
considered the long wave stability of  these flows. In this paper, we consider the steady flow of two 
liquid layers, assuming small waviness of  the inclined plane. Whether steady flow can be achieved 
depends on the residence time of the fluid on the incline and the wavelength of  the roughness. Thus 
the steady state analysis presented here is only appropriate under certain conditions. A perturbation 
analysis is performed for small Reynolds number  flow. The effects of  the wall roughness on the 
film thickness variations as well as other characteristics of  the perturbed flow will be discussed. 
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F igu re  1. F l o w  c o n f i g u r a t i o n .  

2. M A T H E M A T I C A L  F O R M U L A T I O N  

Consider gravity-driven laminar flow of two viscous, incompressible fluids down a slightly wavy 
incline, as shown in figure 1. The origin of the y-axis is placed on the mean position of the incline, 
which forms an angle 0 with the horizontal. The x-axis is in the direction of the mean flow. The 
mean thickness of  each fluid layer is hi, i = 1, 2, for the bottom and the top layer, respectively. 
The problem can be formulated in dimensionless form by choosing appropriate scales. We shall 
use the mean thickness of the bottom layer, ht, as the length scale, the mean velocity of the 
interface, U, as the velocity scale and h j U  as the time scale. The dimensionless wavy incline is given 
by y = E sin(ctx), where E is the dimensionless amplitude and 2n/ct is the dimensionless wavelength. 

In this study, we shall restrict attention to the small waviness case, in which the amplitude of 
the wavy incline is small compared to the mean thickness of the bottom layer, E ,~ 1. The fluid-fluid 
interface is given by y = 1 + f ( x ;  E). The fluid-air free surface is given by y = 1 + n + g(x;  E), where 
n = h2/h~ is the ratio of the mean thickness of the top layer to that of the bottom layer. 

The dimensionless continuity and momentum balance equations for two~limensional steady 
flow in each layer, i = 1, 2, are 

~u ~?v 
dx + ~ = O, [1] 

Ou du) 0p 
Re u~x+v-~-fy = - ~ x x + G x + A u ,  [2] 

Re U~x + v  = - ~ y y + G , + A v ,  [3] 

where Rei=  Uhtpi/rli, i = 1, 2, are the Reynolds numbers for each layer, Gx~= pih~g sin O/Uqi, 
Gy i = --pih~g cos O/Utl~, and A is the two-dimensional Laplacian. p~, qi, i = 1, 2, are the densities 
and viscosities of the two fluids. 

On the wavy inclined plane y = E sin(ctx), no-slip condition applies: 

u = v = 0. [4] 

On the fluid-fluid interface y = 1 + f ( x ;  c), we have the kinematic condition 

af 
= "Uxx' [5] 



GRAVITY-DRIVEN TWO-LAYER FLOW 503 

The continuity of  velocity requires 

Ilu II = 0 ,  [6] 

IIv II = 0, [7] 

where IIFII = ( F ) , -  (F)2 is the jump in F across the interface. The tangential stress and normal 
stress balance equations are 

df 2 On+Or I ~f m( Ov 
[1- - ( -~x)]m(-~y  axj l l+2~x k ~  ~ ) = 0 ,  [8] 

{ ~  m(OU Ov) (Of~2 mOU 
-limp II + 2 \Oy + -~x + \Ox] ~x 

nOV } / [  (Of/21 -- O ~/¢/[" ( Of/213/2 
+ -~y 1 ..31- ~t~Ox] J O'I~x2 I + \axJ J = 0, [9] 

where m = r/fir/i, and al is the dimensionless interface tension, o I = o'*/r h U. The top layer is 
assumed to be adjacent to passive air. On the fluid-air free surface, y = 1 + n + g ( x ;  E), we have 
the kinematic condition 

0g 
v = U~x. [10] 

The tangential stress vanishes 

[ l -- ( O" "~21( O u + ~-xx ) + 2 ~-xx ( ,] .] \-~y ~ ) = 0 .  [ll] 

and the normal stress balances the surface tension force 

o, On 0v +(°'Yl 02g /Fl \ ]A-o -U-x /L+kaxgA = o ,  [12] 

where a2 is the dimensionless surface tension, a2 = ~r*/q2 U. The pressure of  the passive air has been 
taken as zero. 

When the waviness of  the incline is small and the flow is slow, the boundary-value problem 
[1]-[ 12] can be solved by a regular perturbation procedure (Wang 1981). Particularly, the governing 
equations can be solved explicitly when the Reynolds numbers of  each layer are both of  order E. 
We shall restrict ourselves to these simple cases. All the variables in each region are expanded in 
terms of  the small waviness parameter E: 

u = u(°)(y) + Eu(')(x, y) + O(E:), 

v = cv")(x,y) + E2v~2)(x,y) + O(E3), 

p = pm)(y) + Ep.)(x, y) + O(E3), 

f =  t:fO)(x) + E~(2)(x) + O(E3), 

g = EgO)(X) + E2ga)(X) + O(E3). [13] 

The boundary conditions on the wavy incline y = E sin(~x) are also expanded around c = 0, so that 
at each order of E these boundary conditions are imposed on the mean position of the incline, y = 0. 
This procedure is similarly used for the interface and the free surface conditions. This results in 
a sequential of  boundary-value problems at each order of  E. The leading order and the order 
problems are: 
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The 0( 1) problem: 

ap) 
-~ 

dX 
+ G, + AU(‘) = 0, 

-ap’o’ + G,, = 0. 

JY 

The boundary conditions are: 

y =o: 

y = 1: 

u(O) zz 0. 

II u(O’(I = 0, 

Ii II CWJ) o 
~ = > 

8Y 

- l(p(O)j( = 0. 

y=l+n: 

The O(C) problem: 

adO) 
---c 

ay 0. 

p(O) = 0. 

ap 
ax + AU(‘) = 0, 

ap(') 
-___ 

ay 
+ A,(‘) = 0. 

The boundary conditions are: 

y =o: 

au(o) . 

ay sln ax + z4 
(1) = 0, 

CC’) = 0. 

y = 1: 

u(o) 8f(‘) _ v(ll 

ax ’ 

llv(‘)II = 0, 

p!!g+u~l’~~=o; 

il ( cs.4~0) au”) 
m f(l)_ &I(‘) 

dY2 III = o 

+d?;+dx ’ 

[I41 

t151 

1161 

1171 

[181 

[I91 

PO1 

WI 

WI 

v31 

[241 

I251 

WI 

v71 

PI 

1291 

[301 
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02f(I) 
eI~-T-x2 =0 .  [311 

0 ~ ( l )  
u (°) ~' = v  m, [32] 

Ox 

OuO) Ov O) 
82u(°) gO) + + = O, [33] 
ay 2 -fix 

OP(°)g ( ' ) -  o ° ) -  2 O g ( l )  Ou(O) O r ( l )  0 2 g ( l )  
Oy " "- 8x ~ + 2 ~ -- a2 ~ = 0. [34] 

These equations can also be derived rigorously by the domain perturbation method (Joseph 1973). 
It is noted that these equations are also valid for Re = O(C), with n > 1. 

3. SOLUTIONS OF THE BOUNDARY-VALUE PROBLEMS 

We are interested in the effects of the wall waviness on the interface and the free surface 
deformations. These effects can be obtained by solving the boundary-value problems [1]-[12]. At 
the leading order, the velocity and pressure fields in each layer are given by: 

Bottom layer: 0 ~< y ~< 1 

Top l a y e r : l ~ < y ~ < l + n  

U (0) _ _ _  

where ~ is the density ratio 

1 
u(0) = _ _  [_y2 + 2(1 + n~)y], [35] 

1 + 2n~ 

p(O)_ 2 (  ~ ) 
l + 2 n ~  y - n - m - 1  ctgO; [36] 

1 I-[___~y2 ~ + 2(~ (1 + n)y  --  ~- (1 + 2n) + 1 + 2n~], 
l + 2 n ~  L m m m 

[37] 

= P~. [39] 
Pl 

The boundary condition [25] for the O(E) problem suggests that in complex notion, the solution 
to the O(O problem takes the form 

• (x, y )  = ~(y)exp(iotx) ,  (40] 

with the understanding that only the real part of the right hand side of [40] is taken. The continuity 
equation then gives 

i d f  °) 
•(1) : --  - -  [41] 

dy ' 

where prime stands for derivative with respect to y. The momentum equations become: 

0 = - i~f i  m + ( 0  2 - -  ~xz)t~ 0), [42] 

0 = --D0(I)+ (D 2 - ~2)5(1), [43] 

where D = d/dy. The boundary conditions are 

p(O) = 2 ~ (y - 1 - n) ctg O, [38] 
1 + 2 n ( m  
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y = 0: 

y = l :  

y = l + n :  
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~Du (°) - D~ °) = O, 

~o) = O. 

io~u(O)ff(l) = ~ 0 ) ,  

IIt~(')ll = 0, 

I[f °)Du~°) + ff(')[I = 0, 

Ilrn(y")DZu (°) + Off °) + i~°))11 = 0, 

- I l r n O p ( ° ) l l f ( l ) -  )lmff(l)ll - 2i~]'°)llrnDu(°)}l + 2limBO °)ll + a~ ~2fo) = 0. 

[44] 

[45] 

[46] 

[47] 

[48] 

[49] 
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u(O)ic¢~(l) = ~(L), [51] 

$(I)D2u(°) + Dt~ o) + i~tT(') = 0, [52] 

~°)Dp(°) -~6 °) - 2 i ~ , ° ) D u  (°) + 2Dr7 °) + a2~¢2~ 0) = 0. [53] 

Eliminating fro) from [42] and [43], we obtain 

(D 2 - ~2)2t~(') = 0. [541 

The general solution of [54] is 

~o) = Cl sin h(~y )  + c2y sin h ( a y )  + c3 cos h(oty) + c4y cos h(~y) .  [55] 

a0) and/~o) can be obtained form [41] and [42], respectively. The solution in each layer involves 
four unknown coefficients, cj, j = 1, 2, 3, 4, for the bottom layer, and we shall use dj, j = 1, 2, 3, 
4 for the coefficients in the top layer. 

The above solutions are required to satisfy the ten boundary conditions [44]-[53]. This gives a 
system of algebraic equations for ten unknowns: cj ( j  = 1, 2, 3, 4), ~ ( j  = 1,2, 3, 4) and fo),  ~o). 
A numerical method can be employed to solve the algebraic equations for a given set of  parameters. 

4. RESULTS 

The distortions of the fluid-fluid interface and the fluid-air free surface can be characterized by 
their amplitude ratios and phase shifts with respect to the wavy incline. To this end, we shall express 
the leading order interface deformation fO)(x) and the leading order free surface deformation g (l)(x) 
a s  

f ° ) ( x )  = A sin(~x + y), [56] 

g ° ) ( x )  = B sin(0~x + fl), [57] 

where A, 7 are the amplitude ratio and phase shift for the interface, and B, fl are the amplitude 
ratio and phase shift for the free surface. The amplitude ratios and the phase shifts depend on the 
wave number ~, the ratio of the mean thickness n, the ratio of viscosity m, the ratio of density (, 
the inclination angle 0, the interracial tension tr~ and the surface tension g2. 

The amplitude ratio of the interface, A, is plotted as a function of the wave number ~ in figure 
2, for n = 1, ( =  1, tr~ = a2= 0, 0 = 45 °, and various viscosity ratios m = 0.5, 1.0, 2.0. m = 1 
corresponds to the one-fluid configuration. If the top layer is more viscous, m --- 2, the amplitude 
of  the interface is larger than that for the one-fluid case for long waves with wave number ~ < 1.4, 
and smaller than the one-fluid case for short waves when 0t > 1.4. This indicates that for this 
configuration, the viscosity stratification induces a large interface distortion for wave lengths longer 
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Figure 2. Effect of viscosity stratification m on the interface 
amplitude A. n = 1, ( = 1, 0 = 45 °, tr~ = a 2 = 0. The number 
above each curve is the value of corresponding viscosity 

ratio m. m = 1 represents the case of a single fluid. 
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Figure 3. Effect of viscosity stratification on the phase shift 
of the interface 7. n = 1, ~ = 1, 0 =45 °, tr~ = o 2= 0. The 
number above each curve is the value of corresponding 

viscosity ratio m. 

t h a n  4.5 t imes  the  lower  layer  th ickness ,  a n d  suppress  the in ter face  d i s t o r t i on  for  shor te r  waves.  
F o r  the oppos i t e  c o n f i g u r a t i o n  wi th  a less v iscous  top  layer,  m = 0.5, the  role o f  viscosi ty 
s t ra t i f ica t ion  is reversed:  the  in ter face  d i s t o r t i on  is larger  for  waves  shor te r  t h a n  4.5 t imes the lower  
layer  th ickness ,  a n d  smal le r  for  waves  longe r  t h a n  that .  The  in ter face  d i s t o r t i on  becomes  negl ig ib ly  
smal l  for  very  shor t  waves,  say ~t > 4. W h e n  the  wave l eng th  is very smal l  c o m p a r e d  to the lower  
layer  th ickness ,  its effect o n  the  flow is con f ined  to the v ic in i ty  o f  the  incl ine ,  a n d  the in ter face  as 
well  as the  free surface  are  n o t  affected. The  largest  in te r face  d i s to r t ion ,  which  has  the same  
a m p l i t u d e  as the  r o u g h n e s s  o f  the inc l ine  (A = 1), occurs  a t  very l ong  wave,  ct ~ 0 .  

Effect o f  viscosi ty  s t ra t i f ica t ion  o n  the  phase  shift  o f  the in ter face  is p lo t t ed  in f igure 3, for  the 
s ame  p a r a m e t e r  set as in  f igure 2. The  phase  shift  t ends  to zero as the wave  n u m b e r  a p p r o a c h e s  
e i ther  zero or  inf ini ty .  T h u s  the  in ter face  is in  phase  wi th  the wavy  inc l ine  for  very  l ong  a n d  very 
sho r t  waves.  A m a x i m u m  in the phase  shift  is reached  for  a wave l eng th  c o m p a r a b l e  to the lower  
layer  th ickness .  

F igu re s  4 a n d  5 show the  in ter face  a m p l i t u d e  ra t io  a n d  phase  shift  for  dens i ty  strat if ied 
layers,  wi th  n = 1, m = 1, tr~ = t r  2 = 0, 0 = 4 5  ° , ( = 0 . 5 ,  1, 2.0. A t op -heavy  con f igu ra t i on ,  
( = 2.0, suppresses  in te r face  d i s to r t i on ,  a l t h o u g h  this c o n f i g u r a t i o n  m a y  suffer the R a y l e i g h - T a y l o r  
ins tab i l i ty .  O n  the o the r  h an d ,  a b o t t o m - h e a v y  c o n f i g u r a t i o n  p r o m o t e s  in ter face  d i s to r t ion .  
T o p - h e a v y  c o n f i g u r a t i o n  decreases  phase  shift ,  while  b o t t o m - h e a v y  c o n f i g u r a t i o n  increases  phase  
shift.  

The  th ickness  ra t io  o f  the  top  layer  to the b o t t o m  layer,  n, has  s ignf icant  effects o n  the in ter face  
d i s t o r t i o n  for  viscosi ty  strat if ied layers.  In  o u r  f o r m u l a t i o n ,  the m e a n  th ickness  o f  the b o t t o m  layer  
is used  as the l eng th  scale a n d  the ro u g h n es s  o f  the inc l ined  p l ane  is a s s u m e d  to be smal l  c o m p a r e d  
to this  m e a n  thickness .  Thus ,  the m e a n  th ickness  o f  the b o t t o m  layer  is n o t  a l lowed to a p p r o a c h  
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Figure 4. Effect of density stratification on the interface 
amplitude A. n = 1, m = 1, 0 =45 °, tr~ = o 2 =0. The value 

of the density ratio ( is marked above each curve. 
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Figure 5. Effect of density stratification on the phase shift 
of the interface 7. n = 1, m = I, 0 = 45", o I = o 2 = 0. The 
value of the density ratio ( is marked above each curve. 
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Figure 6. Effect of thickness ratio n on the interface ampli- 
tude A. m = 2, ~ = 1, 0 = 45 °, ~r L = e2 = 0. The value of the 

thickness ratio n is marked above each curve. 
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Figure 7. Effect of thickness ratio n on the phase shift of the 
interface ~. m = 2, ( = 1, 0 = 45 °, a~ = % = 0. The value of 

the thickness ratio n is marked above each curve. 

zero or even be comparable  to that  of  the roughness of the incline. Varying the thickness ratio n 
is therefore equivalent  to varying the top layer thickness. For  an extremely thin bo t tom layer with 
a mean  thickness comparable  to the roughness of  the incline, a different length scale has to be used, 
and  the analysis could be very different from the one presented here. Figures 6 and 7 show the 
interface ampli tude ratio and phase shift for the case of a more viscous upper  layer, m = 2, and 
various thickness ratios n = 0.5, 1, 2. A thicker upper  layer, n = 2, reduces the ampl i tude  ratio and  
the phase shift compared  to the single layer case, for all wave numbers .  A th inner  upper  layer, 
n = 0.5, on the other hand,  always promote  the interface dis tor t ion as well as phase shift. Similar 
results are obta ined  for the case of a less viscous upper  layer, m = 0.5, as shown in figures 8 and 
9. It can be easily verified that  for the case of matched densities (( --- 1), an increase in the thickness 
ratio n increases the overall mean  flow rate, regardless of the direction of viscosity stratification. 
It is much  easier for a fluid element to pass over the small bumps  on the incline wi thout  significant 
detour  at a higher flow rate than  at a lower flow rate (still within the limit that  the inertial effects 
are negligible). Thus  the interface deformat ion  is smaller for thick top layers (large values of n) 
than for thin top layers (small values of  n). This effect is robust  in the sense that it holds regardless 
of  the direct ion of viscosity stratification. Similar effects the flow rate has on the free surface for 
a single film have been discussed by Pozrikidis (1988). 

For  p lanar  geometry,  interfacial tension and surface tension are both restorative forces and they 
suppress interface and surface distortions.  Ampl i tude  ratios of the interface for different values of 
interfacial tens ion-surface  tension are compared  in figure 10 for a viscosity stratified configurat ion.  
Large interfacial tension or surface tension are required to see appreciable suppression compared 
to the case wi thout  interfacial and surface tensions. A somewhat  surprising result is that for long 
waves, say c~ < 0.7, the interface ampl i tude  ratio for (try, a2 )=  (0, 20) is smaller than that  for 
(tr I , tr2)= (20, 0). This means that the surface tension force at the l iquid-a i r  free surface is more 
effective than the interfacial tension force at the l iquid- l iquid  interface in suppressing interface 
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Figure 8. Effect of thickness ratio n on the interface ampli- 
tude A. m = 0.5, ~ = 1,0 = 45 °, a I = a 2 = 0. The value of the 

thickness ratio n is marked above each curve. 
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Figure 9. Effect of thickness ratio n on the phase shift of the 
interface ,;. m = 0.5, ( = 1, 0 = 45 °, tr~ = tr 2 = 0. The value 

of the thickness ratio n is marked above each curve. 
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F igure  10. Effect o f  interfacial  and  surface tens ions  on  the interface ampl i tude  A. n = 1, m = 2, ~ = 1, 
0 = 45 °. The  values  o f  (trl, tr2) are m a r k e d  above  each curve. 
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F igure  11. Effect o f  interfacial  and  surface tens ions  on the interface phase  shift  7 for viscosi ty  strat if ied 
layers,  n = 1, m = 2, ( = 1, 0 = 45 °. The values  of  (cq ,a2) are m a r k e d  above  each curve. 

deformation for long waves. The opposite is true only for short waves. Phase shift for the same 
parameter set is plotted in figure 11. Interfacial tension promotes interfacial phase shift while 
surface tension suppresses interfacial phase shift. An interesting result is that for the case of zero 
interfacial tension, a~ = 0, and surface tension tr 2 = 20, the phase shift tends to zero for short waves. 
On the other hand, if surface tension is zero, and large interfacial tension is present, a~ = 20, the 
interface will be n/2 out of phase with the incline for short waves. Qualitatively similar results are 
obtained when the direction of viscosity stratification is reversed, m = 0.5. 

Similar results hold for the free surface amplitude ratio and phase shift. The only qualitatively 
different feature for the free surface distortion is with respect to surface tension variations. 
Surface tension is always more effective in reducing the free surface amplification, regardless of 
the wavelength (figure 12). This is in contrast to the interface amplification (figure 10). The effects 
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of surface tension and interfacial tension are both to increase the phase shift of the free surface 
(figure 13). Representative shapes of  the interface and the free surface have been plotted for two 
different sets of parameters in figures 14 and 15. 

Another useful characterization of the perturbed flow is the wall shear stress distribution. This 
information is important for certain processes involving mass transfer as discussed in Pozrikidis 
(1988). The dimensionless wall shear stress, zw, scaled with r/l U/h~, where U is the interfacial 
velocity of the unperturbed flow, is given by 

1 [ 2 1 z , . = l ~  l + 2 n ~  t-E 2RE(c2iexp(i~x)) ! + 2 n ~ S i n ~ x  , [58] 

where RE stands for the real part. To the leading order, this dimensionless wall shear stress is 
independent of the viscosity ratio m. Since the interface velocity of the unperturbed flow is 

01h2g sin 0 (1 
g = '  + 2n~), [591 

the dimensional wall shear stress is 

r* = (p~hl + p2h2)g sin O + E 2RE(c2i exp(ic~x )) l+2n~Sinc~x rh U /h~ . [60] 

The leading order term on the right hand side of [60] is the result of the balance between 
gravitational forces and viscous forces for the unperturbed flow, and it is independent of the 
viscosity of  both liquids. Thus the effect of  viscosity on the wall shear stress is directly proportional 
to the amplitude of  the inclined wall. The effect of  viscosity stratification on the dimensionless wall 
shear stress z~. is plotted in figure 16 for n = 1, ~ --- 1, tr~ = ~2 = 0, 0 = 45 °, ~ = 1, ~ = 0.05, and 
m =0.1,  1, 10. It is seen that any viscosity stratification (m :~ 1) will increase the maximum 
perturbation wall shear stress. The mean dimensionless wall shear stress is determined by the 
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product n(, and decreases as n( is increased. Changes in either n or ( also have effects on the 
perturbation wall shear stress, as shown in figures 17-19. Finally, the effects of  interfacial tension 
and surface tension on the wall shear stress are shown in figure 20. Surprisingly, both interfacial 
and surface tensions increases the perturbaton wall shear stress. 
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5. C O N C L U D I N G  R E M A R K S  

We have studied the steady two-dimensional flow of two liquid films down a slightly wavy 
sinusoidal plane at low Reynolds numbers. The deformations of both the fluid-fluid interface and 
the fluid-air free surface are obtained in the leading order in terms of the small amplitude of the 
wavy incline. The effects of  the viscosity stratification on the interface and free surface amplitudes 
are shown to depend on the wavelength, and the largest amplitude is always achieved for long 
waves. On the other hand, phase shift reaches a maximum at a wavelength comparable to the lower 
layer thickness. For density stratified layers, a top-heavy configuration seems to be beneficial for 
suppressing interface distortion, although this configuration will suffer the Rayleigh-Taylor 
instability. Larger interface deformation occurs for thin upper layers, and the opposite is true for 
thick upper layers. Although both interfacial and surface tensions reduce the amplitudes of the 
interface and the free surface, they all lead to large phase shifts, and increase the perturbation wall 
shear stress. 

The present study is restricted to steady flows. Obviously, the stability of these flows is of  great 
concern. Stability analysis will be considered in the future. Another possible generalization of the 
present work is to consider finite waviness of the incline. This can be accomplished through 
numerical simulations. 
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